
1.
2.
3.

●

●

●

●

●

○

○

●

CS 4530 March 15, 2021 - Distributed systems 
& Team meetings

Agenda
Distribute systems discussion + review
Team meetings + work on projects
Project/distributed system discussion

Distributed systems
Q: What are the nice things we can from distributed 
systems?

Remove a single point of failure (fault tolerance)
Scalability: Maybe one server can’t handle load, 
but put together it works
Availability: Make sure the whole system stays 
up, even if part goes down
Latency: Less time between request and 
response
Performance: Increase in throughput - be able to 
do more things at a time

Q: How to improve performance without going 
distributed?
“Scaling up rather than scaling out” - If you have a single server, you 
can beef it up, giving it more processing power to handle more load. 
Scaling out - get more systems, might not be that strong each

Q: What are the constraints that make it hard to 
get these nice things?

“More machines, more problems” - more 



●

●

●

●

●

●

○

●

○

●

○

points of failure
8 fallacies of networks - network is not 
reliable. Multiple administrators - multiple 
opinions imposing constraints on how your 
system works. In general, more to maintain, 
more can go wrong

Q: Partitioning….? What does this mean and 
how does it help us achieve distributed 
systems goals?

Split data up onto multiple machines
“Chunking” or “bucketing”
Scalability: store more data!
Performance

Everything is broken up - “performance is 
isolated to each partition” (and won’t 
effect each other)

Fault tolerance?
Yes - no single point of failure, if one 
machine goes down, can still do 
something, but can’t necessarily process 
an arbitrary request

How to determine the split of data?
1. Create a static rule, tell everyone about it 
[Sharding]



◆

◆

◆

◆

◆

○

◆

◆

◆

◆

◆

◆

Cons:
One server might go offline, then what 
do we do?
Have to update rules on clients as 
partitions change

Pros:
No worry about fault tolerance/
performance of that central server 
keeping track of where files are

2. Create a central server, that central 
server knows where each student record/
piece of data is. [Partition]

Pros:
If we need to change the split, it’s all in 
one place and maybe easy to do
Can evenly balance - just say: “put 
50% in each place”

Cons:
Single point of failure
Additional network call required - 
need to go through some directory 
server to find your data



●

○

◆

○

◆

○

◆

◆

○

◆

Q: How does replication work + help us 
achieve our distributed systems goals?

Scalability:
More requests supported - can balance 
load across replicas

Performance:
Higher throughput, by processing 
requests on different machines

Latency:
Latency accumulates from the slow-
processing components, maybe having 
more of the same component means 
they will respond faster
Replicate data closer to users

Availability:
System will keep working even if one or 
a few nodes fail



○

◆

◆

◆

◆

◆

◆

◆

Fault tolerance:
Tolerate more faults, assuming that they 
occur independently between our 
replicas

Example of independent fault (would 
effect just a single node):

Hard disk crashes, power supply 
burns out

Example of non-independent fault 
(would effect more):

Security breaches (are the services 
isolated - does attacking one mean 
both go down?)
ISP goes down/Data center goes 
offline
 



●

○

◆

○

◆

◆

◆

◆

Q: What is the problem with replication?
CAP theorem - we can’t have nice things: Can’t have 
a system that stores data exactly like a single 
machine would, is distributed, and works despite 
network failures

Might do this wrong, and end up with 
inconsistentcies

Choose between using/building a system that:
Guarantees consistency, some number of node 
failure might make it unavailable (works as long 
as a simple majority is not crashed)

Zookeeper or RAFT, RabbitMQ
Guarantees availability, some crashes or failures 
might compromise consistency

Redis, 


